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We present the analysis of a higher-order lattice Boltzmann �LB� method based on the fourth-order Gauss-
Hermite quadrature, with emphasis on the slip velocity and the Knudsen layer. The exact solution of the slip
velocity for the higher-order LB equation is obtained for Poiseuille flows with finite Knudsen numbers. Due to
increased accuracy in velocity space discretization, the higher-order scheme gives much improved slip coef-
ficients as compared with the standard LB method based on the third-order Gauss-Hermite quadrature. A
multiple relaxation time model is investigated to show the effects of the relaxation times for higher-order
moments on the slip phenomena.
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I. INTRODUCTION

With the advancement of microtechnology and nanotech-
nology, fluid flows at the micrometer and nanometer scale
have recently attracted significant attention �1,2�. The major
characteristics of flows in this regime are the presence of the
slip velocity and the growing importance of the kinetic layer,
where the Navier-Stokes equations break down �2�. While
the Boltzmann equation �3� can accurately describe the
strong nonequilibrium effects in the kinetic layer for gaseous
flows, the development of a more efficient, reduced-order
model has been a challenging problem.

The lattice Boltzmann �LB� method �4–8�, as a reduced-
order model of the Boltzmann equation, has been success-
fully applied to various problems including multicomponent,
multiphase, and other complex flows. While the LB method
is designed originally to mimic the Navier-Stokes hydrody-
namics, significant progress in the modeling of microscale
and nanoscale flows has recently been made �9–13�. Since
fluid-wall interactions play a crucial role in finite Knudsen
number �Kn� flows, the major focus has been on boundary
conditions to capture the slip phenomena �9,10,12,14�. Ki-
netic boundary conditions �10�, together with the modifica-
tion of the relaxation dynamics, have been proposed, which
can reproduce the slip phenomena up to second order in Kn
�14–16�. However, due to the lattice constraint, the slip co-
efficients of the standard LB equation, which are based on
the third-order Gauss-Hermite quadrature, are found to be
slightly larger than those of the Boltzmann equation when
the diffuse scattering boundary condition is used for both
methods �16�.

The LB method can be based on a higher-order quadrature
in order to increase the accuracy of discretization in velocity
phase space �17,18�. For moderate Kn flows beyond the slip
flow regime, the higher-order LB method is needed to obtain
a quantitative prediction as well as to reproduce the presence
of the Knudsen layer �17,18�. Ansumali et al. �17� presented
analytical solutions for Couette flows for a hierarchy of the
LB method and showed that the increase of order in the
Gauss-Hermite quadrature results in a much more accurate

treatment of finite Kn flows. Szalmas �19� showed that the
width of the Knudsen layer can be adjusted in the multiple
relaxation time �MRT� model obtained from the fourth-order
Gauss-Hermite quadrature �20,21�.

In this paper, we present the analysis of a higher-order LB
method with emphasis on the slip velocity and the Knudsen
layer. Using the moment method of Ansumali et al. �17�, the
exact solution of the slip velocity for the higher-order LB
equation based on the fourth-order Gauss-Hermite quadra-
ture is obtained for finite Kn Poiseuille flows. The analysis of
a MRT model is presented to show the effects of the relax-
ation dynamics of higher-order moments on the slip velocity
and the Knudsen layer.

II. LATTICE BOLTZMANN METHOD

The discrete velocity Boltzmann �DVB� equation with a
single relaxation time Bhatnagar-Gross-Krook �BGK� colli-
sion operator �7� can be written as

�t f i + ci��� f i = −
1

�
�f i − f i

eq� + Fi, �1�

where f i is the distribution function of the discrete velocity
ci�, t is time, � is the spatial coordinate, � is the relaxation
time, and Fi is an external force for the velocity ci�. The
equilibrium distribution function and the external force term
are, respectively, given by �18�

f i
eq = wi�� +

j�ci�

cs
2 +

1

2

�j�ci��2

�cs
4 −

1

2

j� j�

�cs
2 � , �2�

Fi = wi��g�ci�

cs
2 +

g�u�ci�ci�

cs
4 −

g�u�

cs
2 � , �3�

where g� is the external body force, wi is the weight for the
discrete velocity ci�, and cs�=�RT0� is the sound speed. R is
the gas constant and T0 is the reference temperature. The
density � and the momentum density j� are, respectively,
given by

�
i

f i = � , �4�
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�
i

ci� f i = j� = �u�. �5�

In the standard LB method, the discrete velocities ci� are
based on the third-order Gauss-Hermite quadrature, where
the abscissas are zeros of the third-order Hermite polynomi-
als, in order to recover the �isothermal� Navier-Stokes equa-
tions in the small Kn limit. Here, we use the next member of
the Gauss-Hermite quadrature. The fourth-order Gauss-
Hermite quadrature has the quadrature points 	�a , �b
,
with the weights 	wa ,wb
, where a=�3−�6 and b=�3+�6
�22�. The two-dimensional �2D� quadrature D2Q16 can be
obtained by the product formula �18,22�. Here, the discrete
velocities are given by

cix = cs	a,− a,b,− b,a,− a,b,− b,a,− a,b,− b,a,− a,b,− b
 ,

�6�

ciy = cs	a,a,a,a,− a,− a,− a,− a,b,b,b,b,− b,− b,− b,− b
 .

�7�

The equilibrium function for D2Q16 can be constructed to
satisfy the H theorem in discrete phase space �22� or by the
third-order Hermite expansion of the Maxwellian distribu-
tion �18�. Here, of primary interest are low Mach number
flows and for simplicity, terms up to second order are re-
tained in Eq. �2�. Using the Chapman-Enskog expansion, the
kinematic viscosity is obtained as �=�cs

2. The equation of
state is p=cs

2�, where p is the pressure.
The LB equation is obtained by the time and spatial dis-

cretization of the DVB equation �7�. The errors due to the
time and spatial discretization vanishes when �x→0, where
�x is the lattice spacing. Since the LB equation is consistent
with the DVB equation, the DVB equation will also be re-
ferred to as the LB equation, hereafter, for convenience.

III. ANALYTIC SOLUTION FOR POISEUILLE
FLOW

An analytic solution of the D2Q16 LB equation is ob-
tained for Poiseuille flow. The solution method is based on
that of Ansumali et al. �17�, where a moment system corre-
sponding to the LB equation is solved. The moment system
for D2Q16 �23� can be written as

mj = �
i

ej,i f i

= 	�, jx, jy,Pxx,Pxy,Pyy,Qxyy,Qyxx,Qxxx,Qyyy,

Rx,Ry,R,Sx,Sy,T
 , �8�

where

ej,i = 	1,cix,ciy,cixcix,cixciy,ciyciy,cixciy
2 ,

ciycix
2 ,cix

3 ,ciy
3 ,�cix

2 − 3cs
2�cixciy,�ciy

2 − 3cs
2�cixciy,

�cix
2 − cs

2��ciy
2 − cs

2�,cix�cix
2 − 3cs

2��ciy
2 − 3cs

2�,

ciy�cix
2 − 3cs

2��ciy
2 − 3cs

2�,cixciy�cix
2 − 3cs

2��ciy
2 − 3cs

2�
 .

�9�

In force-driven Poiseuille flow, the flow is steady, �t�·�=0,
and unidirectional, �x�·�=0. For impermeable walls, which
are located at y=H /2 and −H /2, the density is uniform and
jy =0. The velocity ux can be obtained by solving the follow-
ing moment equations:

�yPxy = �g , �10�

�yQxyy = −
1

�
Pxy , �11�

�y�Ry + 3cs
2Pxy� = −

1

�
�Qxyy − cs

2jx� + cs
2�g , �12�

�y�6cs
2Qxyy − 3cs

4jx� = −
1

�
�Ry + 3cs

2Pxy� . �13�

From Eqs. �10�–�13�, we obtain

Pxy = �gy , �14�

Qxyy − cs
2jx = − 5�cs

2�g − 3�2cs
4�y

2jx, �15�

Ry = 3cs
2Pxy + 3�cs

4�yjx, �16�

where the symmetry of the flow at y=0 is used. In the
present problem, the moments involving even powers of ciy
are symmetric about y=0, while those involving odd powers
of ciy are antisymmetric about y=0. The equation for jx reads

− 3�3cs
4�y

4jx + �cs
2�y

2jx = − �g . �17�

The first term on the left-hand side of Eq. �17� is responsible
for the Knudsen layer, which is not captured in the standard
D2Q9 LB method �16,17�.

The solution for jx can be written as

jx = −
1

2�cs
2�gy2 + A cosh� 1

�3�cs

y� + B , �18�

where the symmetry of the flow at y=0 is used again. The
integration constants A and B can be obtained from the
boundary condition of the distribution functions. At the bot-
tom wall, the particles are assumed to be reflected diffusely.
The kinetic boundary condition with diffuse scattering kernel
�10� can be written as


f i
y=−H/2 = 	f i
eq��w, j�w� for ciy 
 0, �19�

where

	 =

�
�cj�−u�w�n��0


�cj� − u�w�n�

f j
y=−H/2

�
�cj�−u�w�n��0


�ck� − u�w�n�
fk
eq��w, j�w�

. �20�

Here, n� is the inward wall-normal vector, �w=�, and j�w is
the momentum density evaluated using the velocity of the
wall, u�w. For the present problem, the diffuse scattering
boundary condition reduces to �see the Appendix�
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f i
y=−H/2 = f i
eq��, jxw, jyw� = �wi for ciy 
 0. �21�

The nonequilibrium distribution function at the wall is then
given by


f i
neq
y=−H/2 = �wi − f i

eq�
�, jx
y=−H/2,0� for ciy 
 0.

�22�

Using Eq. �22�, we obtain

�a�f 1
neq − f 2

neq� + b�f 3
neq − f4

neq��y=−H/2

= − 2wa�waa2 + wbb2�

jx
y=−H/2

cs

= − 2wa�waa2 + wbb2�
1

cs

��− �g
H2

8�cs
2 + A cosh�−

�

2
� + B� , �23�

�a�f 9
neq − f 10

neq� + b�f 11
neq − f 12

neq��y=−H/2

= − 2wb�waa2 + wbb2�

jx
y=−H/2

cs

= − 2wb�waa2 + wbb2�
1

cs

��− �g
H2

8�cs
2 + A cosh�−

�

2
� + B� , �24�

where �=H / ��3�cs�. Alternatively, the nonequilibrium dis-
tribution function can be obtained using the linear relation-
ship between the distribution functions and the moments as
follows:

f i
neq = �

j

ej,i
−1mj

neq, �25�

where

ej,i
−1 =

wi

�k
wkej,kēj,k

ēj,i. �26�

Here, ēj,i is orthogonal to ej,i, with respect to the weight wi
and can be obtained by a procedure similar to the Gram-
Schmidt orthogonalization. The superscript neq represents
the nonequilibrium part of the quantity. Using Eq. �25�, we
obtain

�a�f 1
neq − f 2

neq� + b�f 3
neq − f4

neq��y=−H/2

= 2wa�waa2 + wbb2�

��Pxy
neq

cs
2 a +

Qxyy
neq

2cs
3 �a2 − 1� +

Ry
neq

6cs
4 a�a2 − 3��

y=−H/2

= 2wa�waa2 + wbb2��−
�gH

2cs
2 a

+ �−
��g

cs
−

A

2cs
cosh�−

�

2
���a2 − 1�

+
A

2�3cs

sinh�−
�

2
�a�a2 − 3�� , �27�

�a�f 9
neq − f 10

neq� + b�f 11
neq − f 12

neq��y=−H/2

= 2wb�waa2 + wbb2�

��Pxy
neq

cs
2 b +

Qxyy
neq

2cs
3 �b2 − 1� +

Ry
neq

6cs
4 b�b2 − 3��

y=−H/2

= 2wb�waa2 + wbb2��−
�gH

2cs
2 b

+ �−
��g

cs
−

A

2cs
cosh�−

�

2
���b2 − 1�

+
A

2�3cs

sinh�−
�

2
�b�b2 − 3�� . �28�

Comparing Eqs. �23� and �24� and Eqs. �27� and �28�, we
obtain

��3

2
cosh��

2
� +

a
�2

sinh��

2
��A + B

=
�gH2

8�cs
2 +

�gH

2cs
a + ��g�a2 − 1� , �29�

�−�3

2
cosh��

2
� −

b
�2

sinh��

2
��A + B

=
�gH2

8�cs
2 +

�gH

2cs
b + ��g�b2 − 1� , �30�

from which the constants A and B are given by

A = −
�gH/cs�b − a�/�2 + 4�3��g

2�3 cosh��/2� + �a + b�sinh��/2�
, �31�

B =
b − a

2�2
sinh��

2
�A +

�gH2

8�cs
+

�gH

4cs
�a + b� + 2��g .

�32�

The normalized velocity is thus given by

ûx = − ŷ2 +
1

4
+ Â
��ŷ� + B̂ , �33�

where

Â = −
2�b − a�/�6�−1 + 8/�3�−2

2�3
��/2� + �a + b����/2�
, �34�

B̂ = �a + b

2�3
−

1

2�3

�b − a�2���/2�
2�3
��/2� + �a + b����/2�

��−1

+ �4

3
−

4
�6

�b − a����/2�
2�3
��/2� + �a + b����/2�

��−2. �35�

Here, ûx=2� / �gH2�ux, ŷ=y /H, 
�x�=cosh�x�e−�/2 and ��x�
=sinh�x�e−�/2.
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In Poiseuille flow, of primary interest is the dependence of
the total mass flow rate, normalized by a pressure gradient,
on Kn. Here, Kn is based on the viscosity-based mean free
path �2,3,16�: Kn=�� /2��cs� /H. The rarefaction parameter
� is thus related to Kn as �=�� /6Kn−1. For D2Q16, the
normalized mass flow rate is given by

Q =
1

6Kn
+ C1 + C2Kn + C3Kn2, �36�

where

C1 =
a + b
�2�

−
1

�2�

�b − a�2 tanh���
6

1
2Kn�

2�3 + �a + b�tanh���
6

1
2Kn� , �37�

C2 =
8

�
−

8�6

�

�b − a�tanh���
6

1
2Kn�

2�3 + �a + b�tanh���
6

1
2Kn� , �38�

C3 = −
96

�
� 2

�

tanh���
6

1
2Kn�

2�3 + �a + b�tanh���
6

1
2Kn� . �39�

Here, Q=Kn−1�−1/2
1/2 ûxdŷ. As Kn→0, the asymptotic expres-

sion reads

Q =
1

6Kn
+ �a + b

�2�
−

�b − a�2

2�6� + �2��a + b�
�

+ � 8

�
−

1

�

8�6�b − a�
2�3 + �a + b�

�Kn. �40�

For the slip velocity based on the normalized mass flow rate,
the first- and second-order slip coefficients for D2Q16 are
c1,16�1.073 and c2,16�0.514, respectively. By applying the
same nondimensionalization, the asymptotic solution for the
linearized Boltzmann-BGK equation �3� can be written as

Q =
1

6Kn
+ c1,� + 2c2,�Kn, �41�

where the slip coefficients are c1,��1.147 and c2,��0.678.
The higher-order LB scheme D2Q16 gives much improved
slip coefficients as compared with the standard D2Q9
scheme, for which the first-order and second-order slip coef-
ficients are c1,9=�6 /���1.382� and c2,9=4 /���1.273�, re-
spectively �16�.

Figure 1 shows the normalized mass flow rate as a func-
tion of Kn. The analytic solution obtained here is confirmed
by the numerical solution. For the numerical solution, the
DVB equation is discretized by the second-order total varia-
tion diminishing �TVD� scheme �25� and the explicit Euler
method, and the transverse direction is discretized into 102
lattices including boundary points �26�. As discussed above,
D2Q16 gives improved slip coefficients as compared with
D2Q9 and is in good agreement with the linearized Boltz-
mann equation �24� and the direct simulation Monte Carlo
�DSMC� method �27� even for the transition regime. Note
that as Kn→�, the normalized mass flow rate for D2Q16
approaches a constant value given by

Q =
5�a + b�
3�2�

−
2�b − a�

�3�
. �42�

The constant mass flow rate corresponds to the first-order
slip phenomena in Kn—for Navier-Stokes equations with
no-slip boundary condition, Q=1 / �6Kn�. The Knudsen mini-
mum is therefore not reproduced in D2Q16 �26�.

IV. MULTIPLE RELAXATION TIME MODEL

In the multiple relaxation time �MRT� model, the relax-
ation time can have a different value for each moment to
relax the limitation of the single relaxation time BGK model.
Originally, the LB-MRT model �20,21� has been proposed to
improve numerical stability by creating artificially fast dy-
namics for higher-order moments that do not appear in hy-
drodynamics at the �isothermal� Navier-Stokes order. Be-
sides the numerics, the relaxation times for the higher-order
moments have been used to tune slip velocity in microscale
flows �15,16�. In the standard LB method, this phenomeno-
logical approach has been adopted to compensate insufficient
accuracy in the velocity space discretization for the descrip-
tion of nonequilibrium flows beyond the Navier-Stokes or-
der. In a higher-order LB method, however, the use of a
higher-order Gauss-Hermite quadrature to increase the accu-
racy of velocity space discretization makes the method much
more predictive. It is desirable that a higher-order LB-MRT
model gives correct relaxation rates dictated by microscopic
collision processes. Here, we investigate the effects of the
relaxation times for higher-order moments on the slip veloc-
ity and the Knudsen layer in the D2Q16 scheme.

The LB-MRT equation for D2Q16 can be written as

�t f i + ci��� f i = − �
j

ej,i
−1mj

neq

� j
+ Fi. �43�

Here, three relaxation times are used: � for the second- and
fifth-order moments, �q for the third-order moments, and �r
for the fourth-order moments. The equations for Qxyy and Ry
thus read

�y�Ry + 3cs
2Pxy� = −

1

�q
�Qxyy − cs

2jx� + cs
2�g , �44�

Kn

Q

10-2 10-1 100 101 102

5

10

15
20

FIG. 1. Normalized mass flow rate �dashed line: D2Q16;
squares: numerical solutions for D2Q16; dashed-dotted line: D2Q9;
solid line: linearized Boltzmann �24�; circles: DSMC; dotted line:
no slip�.
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�y�3cs
2Qxyy − 3cs

4jx� = −
1

�r
Ry . �45�

The moments Qxyy and Ry are given by

Qxyy − cs
2jx = − �q�2 + 3�r��cs

2�g − 3�r�q�2cs
4�y

2jx, �46�

Ry = 3�rcs
2Pxy + 3�r�cs

4�yjx, �47�

where �q=�q /� and �r=�r /�. The equation for jx reads

− 3�2�3cs
4�y

4jx + �cs
2�y

2jx = − �g , �48�

where �=��r�q.
In a similar way to the BGK model, the solution for the

velocity is obtained for the MRT model. The normalized ve-
locity for the MRT model is given by

ûx = − ŷ2 +
1

4
+ Âm
��mŷ� + B̂m, �49�

where

Âm = − �
2�b − a�/�6�−1 + 8/�3�q�−2

2�3�
��m/2� + �a + b����m/2�
, �50�

B̂m = �a + b

2�3
−

1

2�3

�b − a�2���m/2�
2�3�
��m/2� + �a + b����m/2�

��−1

+ �q�4

3
−

4
�6

�b − a����m/2�
2�3�
��m/2� + �a + b����m/2�

��−2.

�51�

Here, �m=� /� and �=��q /�r. The normalized mass flow
rate is given by

Q =
1

6Kn
+ C1m + C2mKn + C3mKn2, �52�

where

C1m =
a + b
�2�

−
1

�2�

�b − a�2 tanh���
6

1
2�Kn�

2�3� + �a + b�tanh���
6

1
2�Kn� , �53�

C2m = �q� 8

�
−

8�6

�

�b − a�tanh���
6

1
2�Kn�

2�3� + �a + b�tanh���
6

1
2�Kn�� ,

�54�

C3m = − �q
296

�
� 2

�

tanh���
6

1
2�Kn�

2�3� + �a + b�tanh���
6

1
2�Kn� . �55�

As Kn→0, the asymptotic expression reads

Q =
1

6Kn
+ �a + b

�2�
−

�b − a�2

2�6�� + �2��a + b�
�

+ �q� 8

�
−

8�6

�

�b − a�
2�3� + �a + b�

�Kn. �56�

In the MRT model, the first-order slip coefficient shows de-
pendence on the ratio of the relaxation times for the third-
and fourth-order moments. When �q=�, the first- and second-
order slip coefficients increase as the relaxation time for the
fourth-order moment decreases. The width and strength of
the Knudsen layer are also affected by the relaxation times
for the higher-order moments. As Kn→�, the mass flow rate
approaches a constant value given by Eq. �42�. The
asymptotic behavior at large Kn does not change with �q and
�r.

V. CONCLUSIONS

An analysis of a higher-order lattice Boltzmann method is
presented with emphasis on the slip velocity and the Knud-
sen layer. The exact solution of the slip velocity for the LB
equation with the D2Q16 velocity set is obtained for Poi-
seuille flows with finite Knudsen numbers. Due to increased
accuracy in velocity space discretization, the higher-order
scheme gives much improved slip coefficients as compared
with the standard D2Q9 LB method. The Knudsen minimum
is, however, not reproduced in the D2Q16 scheme, and the
mass flow rate for D2Q16 approaches a constant value in the
large Kn limit. The analysis of a MRT model is presented to
show the effects of the relaxation dynamics of higher-order
moments on the slip velocity and the Knudsen layer.
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APPENDIX

From Eq. �1�, we obtain

ciy�y�i = −
1

�
��i − �i�� , �A1�

where

�i = �
cjy=ciy

f j , �A2�

�i = �
cjy=ciy

wj . �A3�

At y=H /2, �i=	�i� for ciy �0. The solution for �i with
ciy �0 can be written as

�i = �	 − 1��i�e−n/��
ciy
� + �i� , �A4�

where n is the distance from the wall in the upstream direc-
tion of ciy. Using Eq. �A4�, we obtain

�m = �
cjy�0


cjy
f j = �	 − 1��cs�waae−n/�a�cs� + wbbe−n/�b�cs��

+ �cs�waa + wbb� . �A5�
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Due to the symmetry, 	 at y=H /2 is equal to that at y
=−H /2. At y=−H /2, we have


jy
y=−H/2 = 
�p
y=−H/2 − 
�m
y=−H/2 = 0, �A6�

where


�p
y=−H/2 = �
cjy
0


cjy

f j
y=−H/2 = 	�cs�waa + wbb� .

�A7�

Therefore, we have 	=1.
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